Water Chemistry and Beer Flavor

Andy Hejl

Water and lons

- Water is a critical component of beer and life
 - ~85 90% of beer is water
 - lons are charged atoms or groups of atoms
 - Most salts consist of pairs of ions in water
 - Cations positively charged ions
 - Anions negatively charged ions
 - NaCl (table salt), dissolves to give Na⁺, Cl⁻
- Ions in brewing frequently measured in ppm, (mg/L)

Mineral Content Effect on Beer

- Pure water (Distilled or RO) is poor for brewing
- Dissolved ions play several key roles in brewing
 - Allow for proper enzyme function in mash
 - Vital for yeast activity
 - Many trace metals play a role
 - Ions in finished beer affect flavor

pH

- Water spontaneously breaks into small numbers of ions
 H2O → H⁺ + OH⁻
- pH is a measure of the amount of H⁺ in solution

pH Value	Characteristic		
<7	Acidic, more H ⁺		
7	Neutral, even		
>7	Alkaline, more OH-		

- pH important at several steps in brewing process
 - Mash pH for enzyme activity
 - Final pH of beer

Alkalinity

- Measure of the capacity of solution to neutralize acid
- Mainly due to the presence of bicarbonate (HCO₃-)

$$HCO_3^- + H^+ \rightarrow H_2O + CO_2$$

- Higher alkalinity resists change in pH "buffer"
- >100 ppm HCO₃⁻ is considered alkaline
- Alkalinity is more important than the absolute pH
- High alkalinity makes it more difficult to achieve proper mash pH (5.2-5.7)

Hardness

- Hardness is a measure of the amount of Ca²⁺ and Mg²⁺
- Alkalinity can be removed by boiling
 Ca²⁺ + 2HCO₃⁻ → CaCO₃ + H₂O + CO₂
- CO₂ is driven out of solution by boiling
- Boiled water racked off of precipitated CaCO₃
- Reduces the mineral content of Ca²⁺
 - Reduction of Ca²⁺ is temporary hardness
 - Remaining Ca²⁺ and Mg²⁺ permanent hardness
- Easiest to think of all ions in terms of absolute amounts!

Reduction of Alkalinity

- Boiling to remove CO₂, precipitate CaCO₃
- Dilute with distilled water
- Addition of acid to the water
 - Hydrochloric acid, HCI
 - Phosphoric acid, H₃PO₄
 - Lactic acid

Municipal Water Treatment

- Water in the US is disinfected with chlorine source
 - Cl₂, free chlorine
 - Chloramine, NH₂Cl
- Chlorine sources in brewing react to form chlorophenols
 - A medicinal ("band-aid") off flavor
 - Can also form with residual bleach
- Removal of chlorine sources
 - Boiling can remove Cl₂
 - Carbon Filtration Removes Cl₂ and Chloramine
 - Campden tablet (Potassium metabisulfite)

Water Report - Example

pH	8.0
Total Dissolved Solids (TDS) Est	416
Electrical Conductivity, mmho/cm	0.69
Cations / Anions, me/L	7.2 / 7.2

ppm
24
1
66
34
307
0.9 (SAFE)
12
82
6
234
201

Ions in Brewing - Calcium, Ca²⁺

- Calcium is the most important ion in brewing
 - Reduces mash pH
 - Reacts with phosphates in the malt
 - Improves hot and cold break
 - Improves mash enzyme activity, stability
 - Gelatinizes starches, helps lautering
 - Provides nutrients for the yeast
 - Improves clarity in the finished beer
- Typical levels: 5-200 ppm (50-100 best)

Ions in Brewing - Magnesium, Mg²⁺

- Magnesium is closely related to calcium
- Second ion of permanent hardness
- Not as effective as calcium in reducing mash pH
- Important yeast nutrient
- Typical levels: 2-50 ppm (10-30 best)
- High levels have negative consequences
 - >50 ppm gives astringent bitterness
 - >125 ppm acts as a diuretic

Ions in Brewing - Sodium, Na⁺

- Low levels can accentuate sweetness
 - Add a "roundness" or "fullness" to palate
- Typical levels: 2-100 ppm (<50 ppm best)
- Elevated levels affect fermentation and taste
 - High levels can be sour or salty
 - High levels also inhibit yeast performance

Ions in Brewing - Iron, Fe^{2+/3+}

- Iron is not a desirable ion in brewing beyond trace levels
- Not often a problem in city water
- More frequently found in well water
- At low levels can affect the flavor of beer (0.05 ppm)
 - Metallic, blood-like flavor

Ions in Brewing - Trace Metals

- These ions are all important at very low levels
 - Not something you need to add to beer
- Copper, Cu²⁺
 - High levels can contribute to haze
- Manganese, Mn²⁺
 - Similar to iron in unpleasant taste
- Zinc, Zn²⁺
 - Critical for yeast performance
 - Advisable range 0.1-0.2 ppm

lons in Brewing - Bicarbonate, HCO₃⁻

- Primary contributor to alkalinity
- Directly related to carbonate (CO₃²⁻)
- Many negative effects on beer
 - Reduce the lowering of mash pH
 - Inhibits cold break
 - Hurts starch gelatinization (accessibility)
 - Impedes yeast activity in fermentation
- Contributes harsh, bitter flavors in subtle pale beers
- Difficult to work with unless using dark malts

Ions in Brewing - Sulfate, SO₄²-

- A very weakly basic anion, not alkaline
- Gives beer a dryer, fuller flavor
- Has a major effect on perception of bitterness
 - Can make the beer too dry, sharp
 - With more hopped beers, can give a clean bitterness
- In excessively high levels is stongly bitter, harsh

Ions in Brewing - Chloride, Cl

- Another very weakly basic anion, not alkaline
- Increases stability, clarity of beer
- Enhances beer flavor and palate fullness
- Ratio of chloride to sulfate is an important consideration
 - Can change perception of bitterness
- High levels give a salty character

Common Minerals to Adjust Water

- Gypsum
 - Calcium Sulfate, CaSO₄•2H₂O
- Calcium Chloride
 - CaCl₂•2H₂O
- Calcium Carbonate
 - Chalk, CaCO₃
- Table Salt
 - Sodium Chloride, NaCl
- Epsom Salts
 - Magnesium Sulfate, MgSO₄•7H₂O

Water Adjustment in Extract Beer

- Water adjustment in extract beer is not often necessary
 - Mash is already completed
- Can be used to adjust flavor of final beer
- Difficult to know what original water profile was
 - Extract was already mashed and ions concentrated
- Can use pure water to dilute extract
- Significant salt additions can add too many ions to beer

Famous Brewing Waters

City	Calcium	Magnesium	Sodium	Sulfate	Bicarbonate	Chloride
Plzen	7	2	2	5	15	5
Dortmund	225	40	60	120	180	60
Munich	75	18	2	10	150	2
Vienna	200	60	8	125	120	12
Burton	275	40	25	450	260	35
Dublin	120	5	12	55	125	20
Edinburgh	120	25	55	140	225	65
London	90	5	15	40	125	20

Brewing Water and Style Development

- Many beer styles originated because of water
- High carbonate water, low sulfate
 - London, Dublin, Munich
 - Dark grains help to reduce mash pH
- Very hard water
 - Dortmund, Burton-on-Trent
 - High sulfate accentuates dryness, smooths bitterness
- Low mineral content
 - Plzen
 - High hopping without a harsh bitterness
- These water levels may not be what they use today!

Brewing Cities Associations

A list of styles commonly associated with particular cities

City	Style	City	Style
Düsseldorf	Düsseldorf Altbier	Burton-on-Trent	English Pale Ale
Berlin	Berliner Weisse	Newcastle	No. English Brown Ale
Einbeck	Traditional Bock	Senne Valley	Lambic
Köln (Cologne)	Kölsch	Dublin	Dry Stout
Edinburgh	Scottish 60/-	San Francisco	California Common
Bamberg	Classic Rauchbier	Vienna	Vienna Lager